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Calculation of Blackbody Radiance 
 
What is a Blackbody? 
 

A blackbody is a hypothetical object that absorbs all incident electromagnetic 
radiation while maintaining thermal equilibrium.  No light is reflected from or passes 
through a blackbody, but radiation is emitted, and is called blackbody radiation.  The 
prefix black is used because at room temperature such an object would emit almost no 
visible light, appearing black to an observer. 

 
No physical object exactly fits this definition, but most behave at least in part as 

blackbodies.  Calculation of the radiometric quantities associated with blackbody 
radiation is extremely important in physics, chemistry, optics, engineering, astronomy 
and many other areas.  

 
History of blackbody theory 
 

In 1900, Max Planck developed the modern theory describing the radiation field of a 
blackbody.  At the time, there were two distinct models for blackbody radiation: the 
Rayleigh-Jeans law, which fit the measurements well at low frequencies, and Wien’s law, 
which worked well at high frequencies, but neither worked everywhere.  Planck, by 
making the ingenious assumption that the energy of the modes of the electromagnetic 
field must be quantized, developed the theory that fits observations at all parts of the 
spectrum.  This leap marked the birth of quantum mechanics and modern physics. 
 
Radiometric systems of units 

 
There are many choices of units when dealing with radiometric quantities, and each 

discipline has its preferred units.  Spectroscopists traditionally prefer wavenumber, 
infrared engineers use wavelength, and physicists typically deal with frequency.   
Thermal calculations generally involve radiated/received power, but many systems, 
including the human eye, operate as efficient quantum detectors, and photon flux is the 
appropriate measure.  The choice of units is not trivial, as the functional forms differ.  For 
example, the power emitted per unit area of a blackbody at temperature T is proportional 
to T 4, but the photon flux is proportional to T 3. 

 
References containing the basic formulas abound, but it is difficult to find any single 

source with formulas given in each system of units.  Here we collect a comprehensive set 
of radiometric formulas in all the common units. We consider spectral units of frequency 
(Hz), wavelength (µm) and wavenumber (cm−1).  For each, we derive the basic blackbody 
formulas in terms of both power (W) and photon flux.  Beginning with the Planck 
blackbody function in units of W m−2 sr−1 Hz−1, all other functions are derived.   We also 
derive useful formulas for computing integrated band radiance, and present sample C++ 
computer codes in Appendix A.  Appendix B describes the Doppler effect on the 
observed blackbody radiation spectrum of moving sources.  Finally, all significant 
formulae are summarized in Appendix C for quick reference.   
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The Planck Blackbody Formula in Units of Frequency 
 
It can be shown1 that the power emitted per unit projected area of a blackbody at 

temperature T, into a unit solid angle, in frequency interval ν  to ν +dν, is  
 

 
  
Lν =

2hν 3

c2

1
ehν kT −1

   W m−2  sr−1  Hz−1  (1) 

 
where  h is Planck’s constant (6.6260693×10−34   W s2) ,   
 c is the speed of light (2.99792458×108  m s−1)  and  
 k is Boltzmann’s constant (1.380658×10−23  J K−1) . 
 
This is the Planck blackbody formula (in one of many forms).  The quantity Lν is referred 
to as the spectral radiance.  The frequency of the maximum spectral radiance is found by 
setting the derivative with respect to ν equal to zero: 
 

 

  

0 =
dLν

dν
=

6hν 2

c2

1
e

hν
kT −1

−
2hν 3

c2

h kT( )ehν kT

ehν kT −1( )2

0 = 3−
hν
kT

ehν kT

ehν kT −1

  

 
This gives the transcendental equation  3(1 – e –x) = x,  where x = hν/kT .  Evaluating this 
numerically yields x = a3 ≈ 2.82143937212, so 
 

 
  
ν peak =

a3k
h

T   Hz   . (2) 

(We use the subscript 3 to refer to the coefficient in the transcendental equation, other 
versions of which we will encounter).  Substituting this in (1) gives 
 

 

  

Lν , peak =
2h a3kT h( )3

c2

1

e
h a3kT h( )

kT −1

 

 
  
Lν , peak =

2a3
3k 3

h2c2

1
ea3 −1

⎛

⎝
⎜

⎞

⎠
⎟ T 3     W m−2  sr−1  Hz−1  (3) 

 
Many devices and systems respond in proportion to the number of incident photons, 

and it is useful to express radiometric quantities in terms of photons per second rather 
than watts.  Dividing the spectral radiance Lν (Eq. 1) by the energy of a photon, hν, gives 
the spectral photon radiance 

                                                
1 c.f . “Radiometry and the Detection of Optical Radiation,” by Robert W. Boyd, Wiley and Sons, 1983 
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Lν

P =
2ν 2

c2

1
ehν kT −1

   photon s−1  m−2  sr−1  Hz−1   . (4) 

 
The peak of Lν

P occurs when 

 

  

0 =
dLν

P

dν
=

4ν
c2

1
e

hν
kT −1

−
2ν 2

c2

h kT( )ehν kT

ehν kT −1( )2  

 
  
0 = 2 −

hν
kT

ehν kT

ehν kT −1
 

 
This gives the transcendental equation 2(1 – e –x) = x, where x = hν/kT, with solution 
x = a2 ≈ 1.59362426004.  The peak spectral photon radiance thus occurs at frequency 
 

 
  
ν peak

P =
a2k
h

T   Hz   . (5) 

Note that the peak of Lν
P occurs at a lower frequency than Lν.  The peak value of Lν

P is 
found by substituting (5) into (4): 
 

 

  

Lv , peak
P =

2 a2kT h( )2

c2

1

e
h a2 kT h( )

kT −1

 

 
  
Lv , peak

P =
2a2

2k 2

h2c2

1
ea2 −1

T 2      photon s−1  m−2  sr−1  Hz−1  (6) 

 
Both Lν and Lν

P are shown in Fig 1, for several temperatures.  
 

 

 
 
Fig 1—Spectral radiance, Lν, (top) 
and the spectral photon radiance, Lν

P, 
(bottom) as a function of frequency, 
ν, for various temperatures.  The 
small black dots indicate the 
frequency and value of the peak, at 
10 K temperature intervals.  Note that 
Lν and Lν

P have different frequency 
dependences.  Although the peak 
frequency is proportional to T for 
both quantities, Lν peaks at a higher 
frequency than Lν

P.  Furthermore, the 
peak value of Lν increases as T 3, 
whereas the peak value of Lν

P 
increases as T 2. 
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Units of Wavelength 
 
For many applications, particularly when dealing in the infrared region of the spectrum, 
the preferred spectral unit is wavelength in µm, λ = 106 c/ν.  We can deduce the spectral 
radiance per µm, Lλ, from (1) by noting that 
 

 
  
Lλ dλ = Lν dν Lλ =

dν
dλ

Lν =
106 c
λ2 Lν  

With this, and substituting ν = 106 c/λ into (1), the spectral radiance per µm is: 
 

 
  
Lλ =

2 ×1024 hc2

λ5

1
e106 hc λkT −1

  W m−2  sr−1 µm−1  (7) 

 
To find the wavelength of the peak, we set the derivative to zero: 
 

 

  

0 =
dLλ

dλ
=
−1025 hc2

λ6

1
e106 hc λkT −1

+
2 ×1024 hc2

λ5

106 hc λ2kT( )e106 hc λkT

e106 hc λkT −1( )2

0 = 5−
106 hc
λkT

e106 hc λkT

e106 hc λkT −1

  

 
Letting x = 106hc/λkT, we arrive at the transcendental equation 5(1 – e –x) = x, whose 
numerical solution, x = a5 ≈ 4.96511423174  provides 
 

 
  
λpeak =

106 hc
a5kT

   µm  (8) 

The peak value, found by substituting (8) into (7), is 
 

 

  

Lλ , peak =
2 ×1024 hc2

106 hc
a5kT

⎛

⎝⎜
⎞

⎠⎟

5

1

e
106 hc 106 hc

a5kT

⎛

⎝
⎜

⎞

⎠
⎟ kT

−1

 

 
  
Lλ , peak =

2a5
5k5

106 h4c3

1
ea5 −1

T 5     W m−2  sr−1 µm−1  (9) 

 
As we did above with spectral units of Hz, we can derive these radiometric quantities 

in terms of photons per second.   Dividing (7) by the energy of a photon, 106 hc/λ, gives 
the spectral photon radiance, 

 

 
  
Lλ

P =
2 ×1018 c

λ4

1
e106 hc λkT −1

   photon s-1  m-2  sr-1  µm-1   . (10) 
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The wavelength where this peaks is found by differentiating: 
 

 

  

0 =
dLλ

P

dλ
=
−8 ×1018 c

λ5

1
e106 hc λkT −1

+
2 ×1018 c

λ4

106 hc λ2kT( )e106 hc λkT

e106 hc λkT −1( )2  

 

  

0 = 1−
106 hc
4λkT

e106 hc λkT

e106 hc λkT −1
                  let   x = 106 hc λkT

4 1− e− x( ) = x

x = a4 ≈ 3.92069039487

 

 

 
  
λpeak

P =
106 hc
a4kT

      µm    . (11) 

 
The peak spectral photon radiance is 
 

  

  

Lλ , peak
P =

2 ×1018 c

106 hc a4kT( )4

1

e

106 hc

106 hc a4 kT( )kT
−1

 

 
  
Lλ , peak

P =
2a4

4k 4

106 h4c3

1
ea4 −1

T 4      photon s−1  m−2  sr−1 µm−1 . (12)  

 
Lλ and Lλ

P are shown in Fig 2.  Note that as with units of Hz, the spectral radiance and 
spectral photon radiance have different behaviors, and distinctly different temperature 
dependences.  
 

 

 
 
Fig 2—Spectral radiance, Lλ, (top) 
and the spectral photon radiance, Lλ

P, 
(bottom) as a function of wavelength, 
λ, for various temperatures.  The 
small black dots indicate the 
wavelength and value of the peak, at 
10 K temperature intervals.  Note that 
Lλ and  Lλ

P have different wavelength 
dependences.  Although the peak 
wavelength is inversely proportional 
to T for both quantities, Lλ

P peaks at a 
longer wavelength than Lλ.  
Furthermore, the peak value of Lλ 
increases as T 5, whereas the peak 
value of Lλ

P increases as T 4. 
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Units of Wavenumbers 
 

Yet a third spectral unit, commonly used in spectroscopy, is wavenumber, the number 
of waves per cm: σ = ν /100c  cm–1 .  Converting (1) to these units gives 
 

 
  
Lσ =

dν
dσ

Lν = 100c( )Lν  . 

 
  
Lσ = 2 ×108 hc2σ 3 1

e
100 hcσ

kT −1
   W m−2  sr−1  (cm−1)−1  (13) 

 
Again, the peak is where the derivative with respect to wavenumber vanishes: 
 

 

  

0 =
dLσ

dσ
= 6 ×108 hc2σ 2 1

e100hcσ kT −1
− 2 ×108 hc2σ 3

100hc kT( )e100hcσ kT

e100hcσ kT −1( )2

0 = 3−
100hcσ

kT
e100hcσ kT

e100hcσ kT −1
             let   x =

100hcσ
kT

3 1− e− x( ) = x

x = a3 ≈ 2.82143937212

 

 
so 

 
  
σ peak =

a3kT
100hc

   cm−1   . (14) 

 
The peak value is 
 

 

  

Lσ , peak = 2 ×108 hc2 a3kT
100hc

⎛

⎝⎜
⎞

⎠⎟

3
1

e
100hc

a3kT
100hc

⎛

⎝
⎜

⎞

⎠
⎟ kT

−1

 

 
  
Lσ , peak =

200a3
3k 3

h2c
1

ea3 −1
T 3       W m−2  sr−1  cm−1( )−1

 .  (15) 

 
 
The spectral photon radiance is found by dividing Lσ by the energy of a photon, 100hcσ : 
 

 
  
Lσ

P =
Lσ

100hcσ
= 2 ×106 cσ 2 1

e100hcσ kT −1
    photon s−1  m−2  sr−1  (cm−1)−1 . (16) 

 
 
 
We next find the wavenumber at the peak of the spectral photon radiance: 
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0 =
dLσ

P

dσ
= 4 ×106 cσ 1

e100hcσ kT −1
− 2 ×106 cσ 2

100hc kT( )e100hcσ kT

e100hcσ kT −1( )2

0 = 2 −
100hcσ

kT
e100hcσ kT

e100hcσ kT −1
           let  x =

100hcσ
kT

2 1− e− x( ) = x                          x = a2 ≈ 1.59362426004 

  

 
 

and 
  
σ peak

P =
a2k

100hc
T    cm−1 . (17) 

 
The peak spectral photon radiance is 
 

 

  

Lσ , peak
P = 2 ×106 c

a2kT
100hc

⎛

⎝⎜
⎞

⎠⎟

2
1

e
100hc a2 kT 100hc( )

kT −1

 

 
  
Lσ , peak

P = 200
a2

2k 2

h2c
1

ea3 −1
T 2     photon s−1  m−2  sr−1  (cm−1)−1 . (18) 

 
Fig 3 shows plots of Lσ and Lσ

P for various temperatures.  Note again the important 
difference between the spectral radiance and spectral photon radiance.  
 
 
 

 

 
 
Fig 3—Spectral radiance, Lσ , (top) 
and the spectral photon radiance, Lσ

P, 
(bottom) as a function of 
wavenumber, σ, for various 
temperatures.  The small black dots 
indicate the wavenumber and value of 
the peak, at 10 K temperature 
intervals.  Note that Lσ and  Lσ

P have 
different wavenumber dependences.  
Although the peak wavenumber is 
proportional to T for both quantities, 
Lσ peaks at a higher wavenumber than 
Lσ

P.  Furthermore, the peak value of 
Lσ increases as T 3, whereas the peak 
value of Lσ

P increases as T 2. 
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Radiance: Integrating the Planck Equation 
 

Above we considered three different spectral units: frequency, ν, (Hz), wavelength, λ, 
(µm) and wavenumber, σ, (cm–1).  We derived expressions for the spectral radiances Lν , 
Lλ , and Lσ .  To find the radiance, L (W m–2 sr–1), we can integrate any of these over the 
respective spectral variable.  That is, 
 

L = Lνdν
 0

  ∞

∫ = Lλdλ
 0

  ∞

∫ = Lσdσ
 0

  ∞

∫  

 
We will perform the integration of Lν over all frequencies, ν :  
 

 
  
L =

2hν 3

c2

1
ehν kT −1

dν
 0

  ∞

∫  

 
  
= 2

k 3T 3

h2c2

hν
kT

⎛
⎝⎜

⎞
⎠⎟

3
1

ehν kT −1
dν

 0

  ∞

∫           let   x =
hν
kT

     dx =
h

kT
dν  

 
  
= 2

k 4T 4

h3c2

x3

ex −1
dx

 0

  ∞

∫ = 2
k 4T 4

h3c2

x3e− x

1− e− x dx
 0

  ∞

∫         note that 
e− x

1− e− x = e−nx

n=1

∞

∑  

 

  

= 2
k 4T 4

h3c2 x3e−nxdx
 0

  ∞

∫
n=1

∞

∑         integrate by parts...

= 2
k 4T 4

h3c2

6
n4

n=1

∞

∑ = 12
k 4T 4

h3c2 ζ 4( ) = 2
k 4T 4

h3c2

π 4

15

 

 

 
  
L =

2π 4k 4

15h3c2 T 4     W m−2 sr−1   . (19) 

 
(Here we used the result Σ n–4 = ζ (4) = π  4/90, where ζ is the Reimann zeta function)  
The total radiated power per unit area, called the radiant emittance or radiant exitance, 
M, can be found by further integrating with respect to solid angle over the hemisphere 
into which the surface radiates.  A source whose radiance is independent of angle is 
called Lambertian (from Lambert’s cosine law of reflection).  This is implicitly assumed 
for an ideal blackbody, and is a good approximation for many real sources.  For a 
Lambertian source, M is related to L by 
 

 
  
M = dφ

0

2π

∫ Lcosθ sinθdθ
0

π 2

∫ = 2πL x dx
0

1

∫ = πL  

so 

 
  
M =

2π 5k 4

15h3c2

⎛

⎝⎜
⎞

⎠⎟
T 4     W m−2   . (20) 
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This is the Stefan-Boltzmann law, and the quantity in parentheses is the Stefan-
Boltzmann constant.  A common mistake in deriving this result is to assume the factor is 
2π rather than π, because there are 2π steradians in the hemisphere, but this neglects the 
cosθ reduction from Lambert’s cosine law.   
 
Similarly, the total photon radiance is found by integrating Lσ

P over all frequencies: 

 
  
LP =

2ν 2

c2

1
ehν kT −1

dν
0

∞

∫  

 
  
= 2

k 2T 2

h2c2

hν
kT

⎛
⎝⎜

⎞
⎠⎟

2
1

ehν kT −1
dν

 0

  ∞

∫           let   x =
hν
kT

     dx =
h

kT
dν  

 
  
= 2

k 3T 3

h3c2

x2

ex −1
dx

 0

  ∞

∫ = 2
k 3T 3

h3c2

x2e− x

1− e− x dx
 0

  ∞

∫         note that 
e− x

1− e− x = e−nx

n=1

∞

∑  

 

  

= 2
k 3T 3

h3c2 x2e−nxdx
 0

  ∞

∫
n=1

∞

∑             integrate by parts...

= 2
k 3T 3

h3c2

2
n3

n=1

∞

∑
 

 

 
  
LP =

4ζ 3( )k 3

h3c2 T 3     photon s−1  m−2  sr−1  (21) 

 
Recall ζ is the Riemann zeta function.  ζ(3) ≈ 1.202056903159594 is also known as 
Apéry’s constant.  Integrating Lσ

P over the hemisphere (again assuming a Lambertian 
source) gives  
 

 
  
M P =

4πζ 3( )k 3

h3c2 T 3     photon s−1  m−2  (22) 

 
This is the Stefan Boltzmann law for photon radiant emittance.  Notice that the total 
photon flux is proportional to T 3, whereas the total power, given by (5), is proportional 
to T 4. 
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In-band Radiance: Integrating the Planck Equation Over a Finite Range 
 

Above we analytically integrated the spectral radiance over the entire spectral range. 
The result, Eq. (20), is the well-known Stefan-Boltzmann law.  Similarly, Eq. (22) gives 
the integrated photon radiance. As useful as the Stefan-Boltzmann law is, for many 
applications a finite spectral range is needed.  To facilitate this, we compute the one-sided 
integral of the spectral radiance. We follow the method described by Widger and 
Woodall2, using units of wavenumber.  Note that using other spectral units produces the 
same result, because it represents the same physical quantity. 

 

 
  
B σ( ) = L ′σ d ′σ

 σ

  ∞

∫ = 2 ×108 hc2 ′σ 3 1
e100hc ′σ kT −1

d ′σ
 σ

  ∞

∫     

 
  
B σ( ) = 2 ×108 hc2 ′σ 3 1

e100hc ′σ kT −1
d ′σ

 σ

  ∞

∫          let ′x =
100hc ′σ

kT
,   d ′x =

100hc
kT

d ′σ  

 
  
B x( ) = 2 ×108 hc2 kT

100hc
⎛
⎝⎜

⎞
⎠⎟

3
′x 3

e ′x −1
kT

100hc
d ′x

 x

   ∞

∫       where   x =
100hcσ

kT
 

 
  
B x( ) = 2

k 4T 4

h3c2

′x 3

e ′x −1
d ′x

 x

  ∞

∫  

 

Noting that
  

1
e ′x −1

= e−n ′x

n=1

∞

∑ ,  we get     
  
B x( ) = 2

k 4T 4

h3c2 ′x 3e−n ′x d ′x
x

∞

∫
n=1

∞

∑ . 

 
The remaining integral can be integrated by parts3: 
 

 
  

′x 3e−nxd ′x
 x

   ∞

∫ =
x3

n
+

3x2

n2 +
6x
n3 +

6
n4

⎛

⎝⎜
⎞

⎠⎟
e−nx  

 
This gives  
 

 

  

L ′σ d ′σ
 σ

  ∞

∫ = 2
k 4T 4

h3c2

x3

n
+

3x2

n2 +
6x
n3 +

6
n4

⎛

⎝⎜
⎞

⎠⎟
e−nx

n=1

∞

∑      W m−2  sr−1      

                   where   x =
100hcσ

kT

 (23) 

 
Testing shows that carrying the summation up to n = min(2+20/x, 512) provides 
convergence to at least 10 digits.    
 
                                                
2 Widger, W. K. and Woodall, M. P., Integration of the Planck blackbody radiation function, Bulletin of the 
Am. Meteorological Society, 57, 10, 1217-1219, Oct. 1976 
3 CRC Handbook of Chemisry and Physics, 56th edition #521 
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Any finite range can be computed using two one-sided integrals: 

  

 
  

L ′σ d ′σ
 σ1

  σ2

∫ = B σ1( ) − B σ 2( )  

 
Further, the complimentary integral is easily evaluated using (19): 
 

 
  

L ′σ d ′σ
 0

  σ

∫ = L ′σ d ′σ
  0

    ∞

∫ − L ′σ d ′σ
 σ

   ∞

∫ =
2π 4

15
k 4

h3c2 T 4 − B σ( )   

 
A similar formula can be derived for the in-band photon radiance: 

  

BP (σ ) = L ′σ
P d ′σ

 σ

   ∞

∫ = 2 ×106 c ′σ 2 1
e100hc ′σ kT −1

d ′σ
 σ

  ∞

∫       let ′x =
100hc ′σ

kT
,  d ′x =

100hc
kT

d ′σ

BP (x) = 2 ×106 c kT
100hc

⎛
⎝⎜

⎞
⎠⎟

2
′x 3

e ′x −1
kT

100hc
d ′x

 x

  ∞

∫       where   x =
100hcσ

kT

= 2
k 3T 3

h3c2

′x 2

e ′x −1
d ′x

 x

  ∞

∫
 
 

Again using 
  

1
e ′x −1

= e−n ′x

n=1

∞

∑ ,  we get   
  
B x( ) = 2

k 3T 3

h3c2 ′x 2e−n ′x d ′x
 x

   ∞

∫
n=1

∞

∑ . 

 

Integrating by parts 
  

′x 2e−nxd ′x
 x

  ∞

∫ =
x2

n
+

2x
n2 +

2
n3

⎛

⎝⎜
⎞

⎠⎟
e−nx   so  

 

 
  

L ′σ
P d ′σ

 σ

  ∞

∫ = 2
k 3T 3

h3c2

x2

n
+

2x
n2 +

2
n3

⎛

⎝⎜
⎞

⎠⎟
e−nx

n=1

∞

∑        photon s−1  m−2  sr−1  (24) 

 
 
Equations (23) and (24) provide efficient formulas for computing in-band radiance.  
Example C++ computer source code is provided in Appendix A.
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Appendix A:  Algorithms for Computing In-band Radiance 
 

Below are C++ functions for computing the integrated spectral radiance (W m–2 sr–1) 
and integrated spectral photon radiance  (photon s–1 m–2 sr–1).  The functions compute the 
integral from the specified wavenumber to infinity for a blackbody at the input 
temperature.  Finite spectral regions can be computed by using this function twice-once 
with each end point of the spectral region.  The difference of the two gives the radiance 
for the spectral region. 
 

#include  <math.h> // for “exp” function 
  
double planck_integral (double sigma, double temperature) { 
  
//  integral of spectral radiance from sigma (cm-1) to infinity. 
//  result is W/m2/sr. 
//  follows Widger and Woodall, Bulletin of the American Meteorological 
//  Society, Vol. 57, No. 10, pp. 1217 
  
//  constants 
      double Planck =  6.6260693e-34 ;     
      double  Boltzmann = 1.380658e-23 ; 
      double  Speed_of_light = 299792458.0 ; 
      double  Speed_of_light_sq = Speed_of_light * Speed_of_light ; 
  
//  compute powers of x, the dimensionless spectral coordinate 
      double c1 =  (Planck*Speed_of_light/Boltzmann) ; 
      double x =  c1 * 100 * sigma / temperature ; 
      double x2 = x *  x  ; 
      double x3 = x *  x2 ; 
  
//  decide how many terms of sum are needed 
      double iterations = 2.0 + 20.0/x ; 
      iterations = (iterations<512) ? iterations : 512 ;  
      int iter = int(iterations) ; 
 
//  add up terms of sum 
      double sum = 0  ; 
      for (int n=1;  n<iter; n++) { 
            double  dn = 1.0/n ; 
            sum  += exp(-n*x)*(x3 + (3.0 * x2 + 6.0*(x+dn)*dn)*dn)*dn; 
            } 
  
//  return result, in units of W/m2/sr 
      double c2 =  (2.0*Planck*Speed_of_light_sq) ; 
      return  c2*pow(temperature/c1,4)*sum ; 
  
} 
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#include  <math.h>  // for “exp”  function 
  
double planck_photon_integral (double sigma, double temperature) { 
  
//  integral of spectral photon radiance from sigma (cm-1) to infinity. 
//  result is photons/s/m2/sr. 
//  follows Widger and Woodall, Bulletin of the American Meteorological 
//  Society, Vol. 57, No. 10, pp. 1217 
  
//  constants 
      double Planck =  6.6260693e-34 ;     
      double Boltzmann = 1.380658e-23 ; 
      double Speed_of_light = 299792458.0 ; 
  
//  compute powers of x, the dimensionless spectral coordinate 
      double c1 =  Planck*Speed_of_light/Boltzmann ; 
      double x =  c1*100*sigma/temperature ; 
      double x2 = x *  x  ; 
   
//  decide how many terms of sum are needed 
      double iterations = 2.0 + 20.0/x ; 
      iterations = (iterations<512) ? iterations : 512 ;  
      int iter = int(iterations) ; 
  
//  add up terms of sum 
      double sum = 0  ; 
      for (int n=1;  n<iter; n++) { 
            double  dn = 1.0/n ; 
            sum  += exp(-n*x) * (x2 + 2.0*(x + dn)*dn)*dn ; 
            } 
  
//  return result, in units of photons/s/m2/sr 
      double kTohc =  Boltzmann*temperature/(Planck*Speed_of_light) ; 
      double c2 =  2.0* pow(kTohc,3)*Speed_of_light ; 
      return c2 *sum  ; 
  
} 
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Appendix B: The Doppler Effect 
 
The observed frequency ν′ of light emitted from a source moving with velocity u as 
depicted in Fig. B1 is given by 4 
 

 
  
′ν =

ν

1− u2 c2
1−

u
c

cosθ
⎛
⎝⎜

⎞
⎠⎟

   , (B1) 

 
where ν is the frequency of the light in the rest frame of the source, and c is the speed of 
light, 299,792  km/s. 
 

 
Fig B1—Geometry of a moving source.  If the source is receding, the measured frequency will be 
decreased (“red shifted”), compared to the frequency in the rest frame of the source.  If the source 
is approaching, the measured frequency will be increased (“blue shifted”).  Eq. B1 gives the 
relationship between the frequencies in the two reference frames. 

 
If the velocity is purely radial, then Eq. B1 reduces to 
 

 
 
′ν = ν c − u

c + u
= βν   , (B2) 

 
where β2 = (c−u)/(c+u).  Note that in Eq. B2 we have adopted the convention that u > 0 
indicates a receding source. For our application, we assume the velocity is purely radial 
(θ= 0° or 180°) and use Eq. 2.5  The magnitude of the Doppler effect for some typical 
situations is given in Table B1.  
 

Table B1—Examples of Doppler shifts for 1000 cm-1 (10 µ m) light 

source recession 
velocity (km/s) shift (cm-1) 

geostationary satellite 3 0.01 
low Earth orbit satellite 7 0.02 
orbital speed of Earth 30 0.1 
typical star 300 1      
most distant galaxy 75,000 225 

                                                
4 J. D. Jackson, Classical Electrodynamics, 2nd ed., pp 522 
5 The tangential effect is small in most realistic cases anyway.  For example, 1000 cm-1 light (10 µm) from 
a source moving at 100 km/s perpendicular to the line of sight is shifted only 56×10-6 cm-1. 
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Eq. B2 gives the Lorentz transformation for a monochromatic frequency ν.  However, for 
a continuous spectrum, we cannot simply scale all frequencies.6  We must also apply the 
Lorentz transformation to the (necessarily finite) aperture collecting the radiation.  An 
aperture subtending solid angle Ω in the rest frame of the source will appear to have solid 
angle  
 

 
  
′Ω = Ω

c + u
c − u

⎛
⎝⎜

⎞
⎠⎟
= β−2Ω  (B3) 

 
when receding with velocity u.  Suppose now that the source has a rest-frame radiance of 
LP(ν).  An aperture of size Ω  in its rest frame will receive a photon flux of  

 
N(ν) = ΩLP(ν) 

 
If the aperture is receding with velocity u, the photon flux received from the receding 
source will be 

 

  ′N ν( ) = β 2ΩLP β−1ν( )  
 

If the source is a blackbody at temperature T,  (Eq. 4), we have 
 

  

′N (ν) = β 2 ′Ω
2h ν β( )2

c2

1
ehν βkT −1

= ′Ω
2hν 2

c2

1
ehν k βT( ) −1

 

 
If we interpret this radiation as coming from a stationary blackbody, that is, 
L'(ν) = N'(ν)/Ω', then the effective temperature is 
 

 

 
 
′T = T c − u

c + u
   , (B4) 

 
Thus the spectrum of a receding blackbody appears identical to a cooler, stationary 
blackbody.

                                                
6 T. P. Gill, “The Doppler Effect”, Logos Press, Inc., 1965 
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Appendix C: Summary of Formulas 
 
In the following formulas, ν is in Hz, λ in µm, σ in cm–1, and T in K.  The rest of the 
constants are given below. 
 

  
Lν =

2hν 3

c2

1
ehν kT −1

   W m−2  sr−1  Hz−1  

  
ν peak =

a3k
h

T   Hz  
  
Lν , peak =

2a3
3k 3

h2c2

1
ea3 −1

T 3     W m−2  sr−1  Hz−1  

 
 

  
Lν

P =
2ν 2

c2

1
ehν kT −1

   photon s−1  m−2  sr−1  Hz−1  

  
ν peak

P =
a2k
h

T   Hz  
  
Lv , peak

P =
2a2

2k 2

h2c2

1
ea2 −1

T 2      photon s−1  m−2  sr−1  Hz−1  

 
 

  
Lλ =

2 ×1024 hc2

λ5

1
e106 hc λkT −1

  W m−2  sr−1 µm−1  

  
λpeak =

106 hc
a5kT

   µm  
  
Lλ , peak =

2a5
5k5

106 h4c3

1
ea5 −1

T 5     W m−2  sr−1 µm−1  

 
 

  
Lλ

P =
2 ×1018 c

λ4

1
e106 hc λkT −1

   photon s-1  m-2  sr-1  µm-1  

  
λpeak

P =
106 hc
a4kT

   µm  
  
Lλ , peak

P =
2a4

4k 4

106 h4c3

1
ea4 −1

T 4      photon s−1  m−2  sr−1 µm−1  

 
 

  
Lσ = 2 ×108 hc2σ 3 1

e
100 hcσ

kT −1
   W m−1  sr−1  (cm−1)−1  

  
σ peak =

a3k
100hc

T    cm-1  
  
Lσ , peak =

200a3
3k 3

h2c
1

ea3 −1
T 3       W m−2  sr−1  cm−1( )−1

 

 
 

  
Lσ

P = 2 ×106 cσ 2 1
e100hcσ kT −1

    photon s−1  m−2  sr−1  (cm−1)−1  

  
σ peak

P =
a2k

100hc
T     cm−1  

  
Lσ , peak

P =
200a2

2k 2

h2c
1

ea3 −1
T 2     photon s−1  m−2  sr−1  (cm−1)−1  
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L =

2π 4k 4

15h3c2 T 4     W m−2 sr−1   

  
M =

2π 5k 4

15h3c2 T 4     W m−2  

 
 

  
LP =

4ζ 3( )k 3

h3c2 T 3     photon s−1  m−2  sr−1  

  
M P =

4πζ 3( )k 3

h3c2 T 3     photon s−1  m−2  

 
 
 
 

  

L ′σ d ′σ
 σ

 ∞

∫ = 2
k 4T 4

h3c2

x3

n
+

3x2

n2 +
6x
n3 +

6
n4

⎛

⎝⎜
⎞

⎠⎟
e−nx

n=1

∞

∑      W m−2  sr−1      

L ′σ
P d ′σ

 σ

  ∞

∫ = 2
k 3T 3

h3c2

x2

n
+

2x
n2 +

2
n3

⎛

⎝⎜
⎞

⎠⎟
e−nx

n=1

∞

∑          photons s−1  m−2  sr−1

                   where   x =
100hcσ

kT

 

 
 

 
′T = T c − u

c + u
              (u is relative velocity of source, u > 0 indicating recession) 

 
 

  

h = 6.6260693×10−34     W s2       Planck’s constant
c = 2.99792458 ×108    m / s        speed of light 
k = 1.380658 ×10−23    J / K          Boltzmann’s constant

ζ (3) = 1.202056903159594              Apéry’s constant, Riemann Zeta function

a2 = 1.59362426004                      solution to    2 1− e− x( ) − x = 0

a3 = 2.82143937212                      solution to    3 1− e− x( ) − x = 0

a4 = 3.92069039487                      solution to    4 1− e− x( ) − x = 0

a5 = 4.96511423174                      solution to    5 1− e− x( ) − x = 0

 


